Recovery of Functions of Many Variables via Compressive Sensing
نویسندگان
چکیده
Recovery of functions of many variables from sample values usually suffers the curse of dimensionality: The number of required samples scales exponentially with the spatial dimension. In order to avoid this severe bottleneck, one needs to impose further structural properties of the function to be recovered apart from smoothness. Here, we build on ideas from compressive sensing and introduce a function model that involves “sparsity with respect to dimensions” in the Fourier domain. Using recent estimates on the restricted isometry constants of measurement matrices associated to randomly sampled trigonometric systems, we show that the number of required samples scales only logarithmically in the spatial dimension provided the function to be recovered follows the newly introduced highdimensional function model. Keywords— Functions in high dimensions, compressive sensing, sparse Fourier expansions, Fourier algebra, restricted isometry property.
منابع مشابه
Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کاملImage Compressive Sensing Recovery Using Group Sparse Coding via Non-convex Weighted Lp Minimization
Compressive sensing (CS) has attracted considerable research from signal/image processing communities. Recent studies further show that structured or group sparsity often leads to more powerful signal reconstruction techniques in various CS taskes. Unlike the conventional sparsity-promoting convex regularization methods, this paper proposes a new approach for image compressive sensing recovery ...
متن کاملStable and robust $\ell_p$-constrained compressive sensing recovery via robust width property
We study the recovery results of lp-constrained compressive sensing (CS) with p ≥ 1 via robust width property and determine conditions on the number of measurements for standard Gaussian matrices under which the property holds with high probability. Our paper extends the existing results in Cahill and Mixon (2014) from l2-constrained CS to lp-constrained case with p ≥ 1 and complements the reco...
متن کاملSparse Matrix Recovery from Random Samples via 2D Orthogonal Matching Pursuit
Since its emergence, compressive sensing (CS) has attracted many researchers’ attention. In the CS, recovery algorithms play an important role. Basis pursuit (BP) and matching pursuit (MP) are two major classes of CS recovery algorithms. However, both BP and MP are originally designed for one-dimensional (1D) sparse signal recovery, while many practical signals are two-dimensional (2D), e.g. im...
متن کاملImage Compressive Sensing Recovery Using Adaptively Learned Sparsifying Basis via L0 Minimization
Frommany fewer acquired measurements than suggested by the Nyquist sampling theory, compressive sensing (CS) theory demonstrates that, a signal can be reconstructed with high probability when it exhibits sparsity in some domain. Most of the conventional CS recovery approaches, however, exploited a set of fixed bases (e.g. DCT, wavelet and gradient domain) for the entirety of a signal, which are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011